

Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form must be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance must be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

		F					
PGM technology		Transformerless,					
		Model: R5-7K-S2,					
		Input: 80V-600Vdc, 25	i/12.5Adc max. ,				
		Output: 230Vac, 30.54	Output: 230Vac, 30.5A, 7000W				
Manufacturer name		Guangzhou Sanjing Electric Co., Ltd.					
Address		No.9, Lizhishan Road, Science City, Guangzhou High-tech Zone, Guangdong, P.R.China					
Tel	+86 020-6660 8528	Web site	http://www.saj-electric.cn				
E:mail guangquan.pan@saj-electric.com		1					
Registered Capacity		7 kW					

Engineering Recommendation G99 Form A2-3

Type A Power Generating Modules

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGMs** tests marked with * may be carried out at the time of commissioning (Form A4).

Tested option:	1. Fully Type Tested	2. Partially Type Tested	3. One-off Man. Info.	4. Tested on Site at time of Commission- ing
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission	X	N/A	N/A	N/A
1. Operating Range	N/A			
2. PQ – Harmonics				
3. PQ – Voltage Fluctuation and Flicker				
4. PQ – DC Injection (Power Park Modules only)				
5. Power Factor (PF)*				
6. Frequency protection trip and ride through tests*				
7. Voltage protection trip and ride through tests*				
8. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*				
9. LFSM-O Test*				
10. Protection – Reconnection Timer*				
11. Fault Level Contribution				
12. Self-monitoring Solid State Switch				
13. Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)*	-			
14. Logic Interface (input port)*				
* may be carried out at the time of commissioning (Form A.: Document reference(s) for Manufacturers' Information :	2-4).			

Engineering Recommendation G99 Form A2-3

Type A Power Generating Modules

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer's** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the product meets all the requirements of EREC G99.

Signe	Alan Pan	On behalf of	Guangzhou Sanjing Electric Co., Ltd.
-------	----------	--------------	--------------------------------------

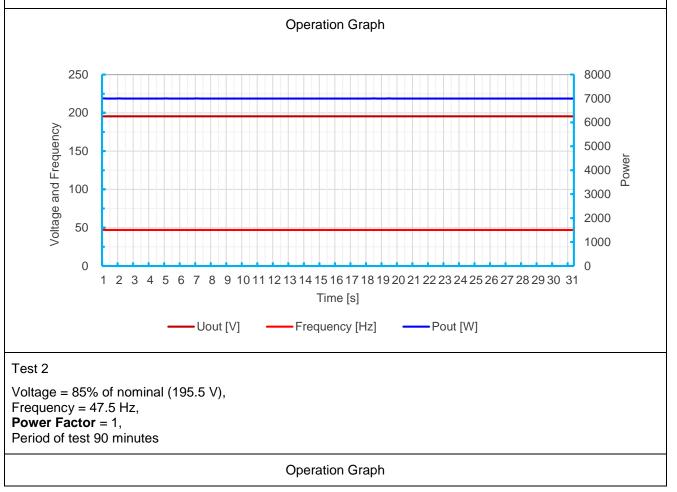
Note that testing can be done by the Manufacturer of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

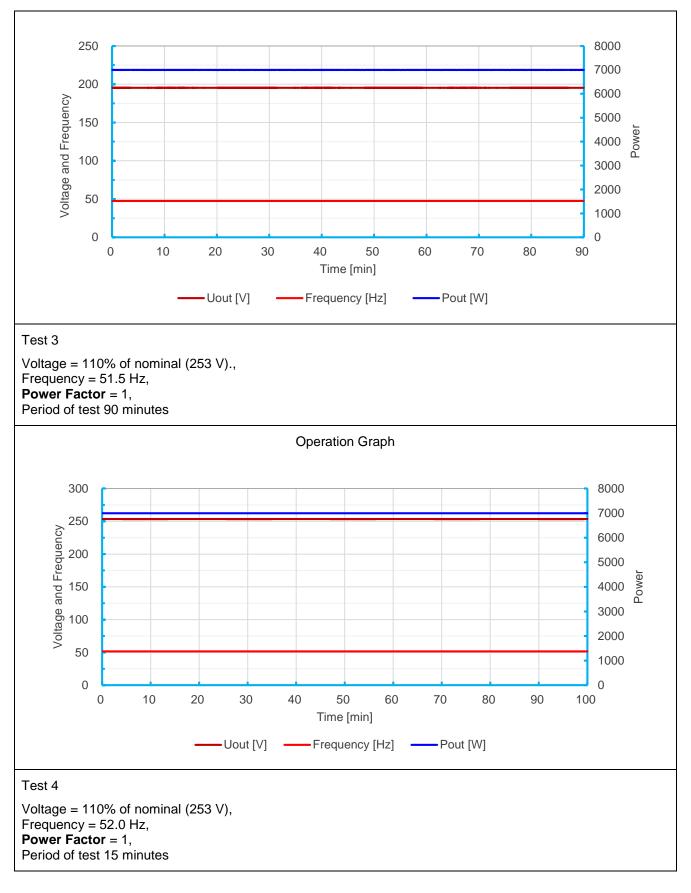
A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

1. Operating Range: Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

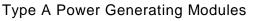
Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

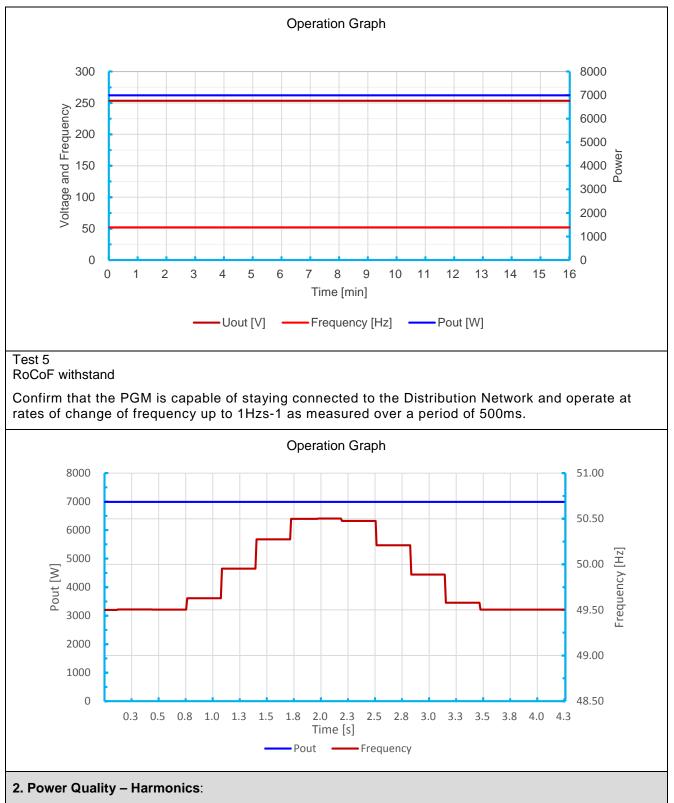

The Interface Protection shall be disabled during the tests.

In case of a PV Power Park Module the PV primary source may be replaced by a DC source.


In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.

Test 1


Voltage = 85% of nominal (195.5 V), Frequency = 47 Hz, **Power Factor** = 1, Period of test 20 s



For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

Power Generating Module rating per phase (rpp)			7	kVA	Harmonic % = Measured Valu (A) x 23/rating per phase (kVA		
Harmonic	Harmonic At 45-55% of Registered Capacity		100% of Registered	Capacity	Limit in BS	EN 61000-3-12	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.078	0.258	0.197	0.647	8%	8%	
3	0.089	0.292	0.113	0.370	21.6%	Not stated	
4	0.031	0.101	0.044	0.145	4%	4%	
5	0.064	0.210	0.100	0.327	10.7%	10.7%	
6	0.028	0.094	0.011	0.036	2.67%	2.67%	
7	0.096	0.314	0.078	0.257	7.2%	7.2%	
8	0.023	0.077	0.045	0.148	2%	2%	
9	0.095	0.313	0.112	0.367	3.8%	Not stated	
10	0.029	0.094	0.028	0.091	1.6%	1.6%	
11	0.111	0.363	0.203	0.665	3.1%	3.1%	
12	0.006	0.019	0.020	0.065	1.33%	1.33%	
13	0.070	0.231	0.130	0.427	2%	2%	
THD ¹		1.725		1.409	23%	13%	
PWHD ²		2.266		2.277	23%	22%	

¹ THD = Total Harmonic Distortion

² PWHD = Partial Weighted Harmonic Distortion

3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

		Starting			Stopping			Running			
	d max	dc	d(t)	d max	do	C	d((t)	P st	P It 2 I	nours
Measured Values at test impedance	0.34	0.21	0	0.34	0.2	22	0		0.12	0.13	
Normalised to standard impedance	0.34	0.21	0	0.34	0.2	22	0		0.12	0.13	
Normalised to required maximum impedance											
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	4%	3.:	3%	3.	3%	1.0	0.65	
					•						
Test Impedance	R	0.4		Ω		XI		0.25			Ω
Standard Impedance	R	0.24 * 0.4 ^		Ω		XI		0.15 * 0.25 ^			Ω
Maximum Impedance	R			Ω		XI					Ω

* Applies to three phase and split single phase **Power Generating Modules**.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase system reference source resistance is 0.24 $\boldsymbol{\Omega}$

Three phase units reference source resistance is 0.24 $\boldsymbol{\Omega}$

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to comply with the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below

Test start date	2021-6-6	Test end date	2021-6-6
Test location	No.9, Lizhishan Road, Science C P.R.China	City, Guangzhou High-tech Zone	, Guangdong,

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

Test power level	10%	55%	100%	
Recorded value in Amps	0.057	0.050	0.059	
as % of rated AC current	0.19	0.17	0.19	
Limit	0.25%	0.25%	0.25%	

5. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)	
Measured value	0.988	0.999	0.998	
Power Factor Limit	>0.95	>0.95	>0.95	

6. Protection – Frequency tests: These tests should be carried out in accordance with the Annex A.7.1.2.3.

Function	Setting		Trip test		"No trip tests"	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5 Hz	20 s	47.52 Hz	20.02 s	47.7 Hz 25 s	No trip
U/F stage 2	47 Hz	0.5 s	47.02 Hz	0.498 s	47.2 Hz 19.98 s	No trip
					46.8 Hz 0.48 s	No trip

O/F	52 Hz	0.5 s	51.98 Hz	0.502 s	51.8 Hz 89.98 s	No trip
					52.2 Hz 0.48 s	No trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2.

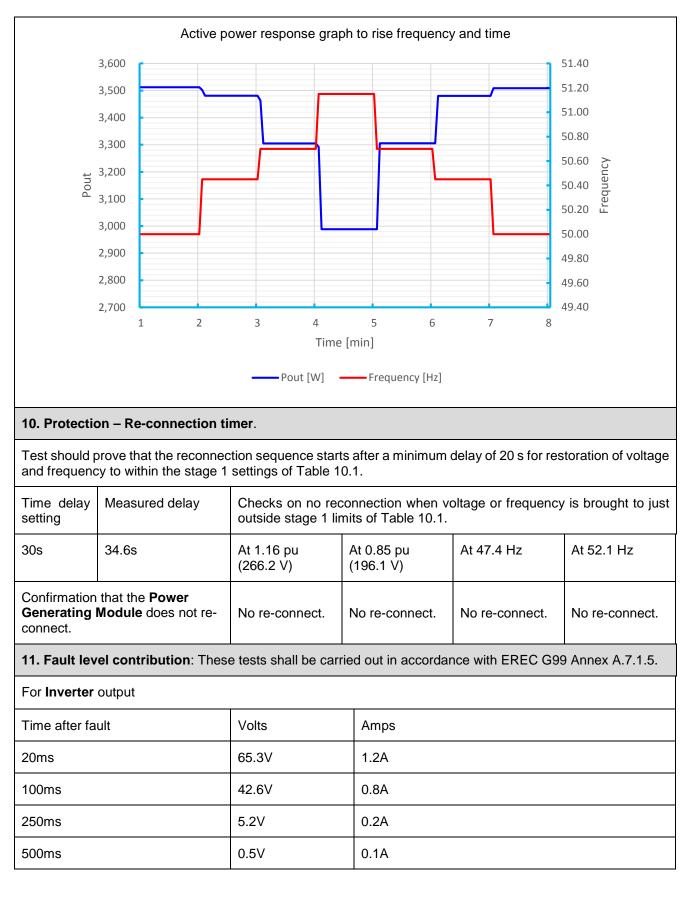
Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	185.6V	2.502 s	188 V 3.50 s	No trip
					180 V 2.48 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	261.9V	0.998 s	258.2 V 2.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	272.1V	0.502 s	269.7 V 0.98 s	No trip
					277.7 V 0.48 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Test Power and imbalance	33%	66%	100%	33%	66%	100%
	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s	0.198s	0.228s	0.256s	0.190s	0.212s	0.258s



Loss of Mains F Annex A.7.1.2.6.	Protection, Vector Sh	nift Stabi	lity test. This	test should be c	arried (out in a	accordance with
	Start Frequency		Change		Confirm no trip		
Positive Vector Shift	49.5 Hz		+50 degrees		No trip		
Negative Vector Shift	50.5 Hz		- 50 degrees		No trip		
Loss of Mains P A.7.1.2.6.	rotection, RoCoF Sta	ability te	st: This test sl	hould be carried	out in a	accorda	ance with Annex
Ramp range	Test frequency ramp):	Test Duration		Confirm no trip		
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹		2.1 s		No trip		
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹		2.1 s		No trip		
Active Power rest injection tests are	pe carried out in accord sponse to rising freque undertaken in accorda	ency/time ance with	plots are attac Annex A.7.2.4	hed if frequency		Y	
Alternatively, sime	ulation results should b	be noted l	below:				
Test sequence at Registered Capacity >80%	Measured Active	Freque	nev	Primary Power Source			
Supacity 20070	Power Output		ncy	Primary Powe	r Sourc		Active Power Gradient
Step a) 50.00Hz ±0.01Hz	Power Output 6993.0 W		50.00 Hz	Primary Powe	r Sourc		
Step a) 50.00Hz		5		Primary Powe	r Sourc		
Step a) 50.00Hz ±0.01Hz Step b) 50.45Hz	6993.0 W	5	50.00 Hz				Gradient
Step a) 50.00Hz ±0.01Hz Step b) 50.45Hz ±0.05Hz Step c) 50.70Hz	6993.0 W 6929.9 W	5	50.00 Hz 50.45 Hz	Primary Powe			Gradient 9.99%
Step a) 50.00Hz ±0.01Hz Step b) 50.45Hz ±0.05Hz Step c) 50.70Hz ±0.10Hz Step d) 51.15Hz	6993.0 W 6929.9 W 6586.6 W	5	50.00 Hz 50.45 Hz 50.70 Hz				Gradient 9.99% 10.16%

Step g) 50.00Hz ±0.01Hz	6993.0 W	50.00 Hz								
Active power response graph to rise frequency and time										
7,200			51	1.40						
7,000			51	1.20						
6,800				1.00						
6,600		┝━━┫ ┡━		0.80						
ti 6,400	-			0.60 Southand Southan						
و 6,200).20 H						
6,000				0.00						
5,800			49	9.80						
5,600			- 49	9.60						
5,400		3 4 5	6 7 8	9.40						
	1 2	Time [min]	0 , 0							
		Pout [W]	ency [Hz]							
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient						
Step a) 50.00Hz ±0.01Hz	3512.5 W	50.00 Hz								
Step b) 50.45Hz ±0.05Hz	3480.8 W	50.45 Hz		9.99%						
Step c) 50.70Hz ±0.10Hz	3305.0 W	50.70 Hz		10.00%						
Step d) 51.15Hz ±0.05Hz	2988.3 W	51.15 Hz	3622.5 W	9.99%						
Step e) 50.70Hz ±0.10Hz	3305.4 W	50.70 Hz		10.02%						
Step f) 50.45Hz ±0.05Hz	3480.5 W	50.45 Hz		9.90%						
Step g) 50.00Hz ±0.01Hz	3509.0 W	50.00 Hz								

Engineering Recommendation G99 Form A2-3

Time to trip	300ms	In seconds				
12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.7.						
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.						
13. Wiring functional tests: If required by para 15.2.1.						
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)						
14. Logic interface (input port).						
Confirm that an input port is provided and can be used to shut down the module.						
Additional comments.						